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ABSTRACT: 

In many-body physics, understanding how 

symmetry principles govern system dynamics 

is fundamental to both classical and quantum 

mechanical formulations. This study focuses 

on multi-particle systems with pairwise 

distance-dependent interaction potentials, 

exploring the emergence and conservation of 

spatial and dynamical symmetries. Using 

analytical techniques and group-theoretical 

methods, we examine how the form of the 

potential—dependent solely on inter-particle 

distances—affects invariants such as 

momentum, angular momentum, and total 

energy. The work highlights the connection 

between spherically symmetric potentials and 

global symmetry groups, including 

translational and rotational invariance. 

Applications range from gravitational and 

Coulombic systems to molecular and 

condensed matter models. The study 

underscores the critical role of potential 

symmetry in defining conserved quantities, 

integrability, and system behavior under 

perturbation. 

INTRODUCTION  

The dynamics of many-body systems are at the 

heart of theoretical physics, with applications 

extending from celestial mechanics to 

quantum matter. A particularly important class 

of these systems is governed by distance-

dependent potentials, where the interaction 

energy between any two particles depends 

only on the scalar distance between them. 

These potentials, often symmetric under 

spatial transformations, give rise to rich 

symmetry structures that can dramatically 

simplify the analysis of otherwise complex 

systems. 

Symmetries play a central role in modern 

physics—not only offering conservation laws 

via Noether’s theorem but also guiding the 

formulation of solvable models and invariant 

quantities. Systems with radial potentials, such 

as gravitational or electrostatic interactions, 

inherently possess rotational symmetry, while 

systems with homogeneous pairwise 

interactions may exhibit translational and 

scaling symmetries. 

In this work, we focus on the implications of 

distance-based interaction functions in multi-

particle systems. We analyze the conserved 

quantities associated with continuous 

symmetries (e.g., angular momentum for 

rotational invariance), identify conditions for 

integrability, and investigate how perturbations 

in the potential form influence symmetry 

breaking. Through both analytical approaches 

and theoretical modeling, this study builds a 

deeper understanding of the relationship 

between potential form and symmetry 

conservation in physical systems. 

The configuration of a system of N atoms at 

positions qi , i = 1, 2, . . . , N, is defined as a 

3N-dimensional vector q = (q1, q2, . . . , qN ) ∈ R 3N . We note that these can provisionally 

be thought of as vertices of an N-gon, or an N-

polyhedron, assuming that qi 6= qj for i 6= j. 

The lengths of edges are distances between 

atoms, which we denote by 

 
In this paper, we study potential functions U : 

R 3N → R called central potential functions 
which satisfy certainsymmetries as specified in 

Definition 1. These symmetries are: (i) 

translational invariance; (ii) rotational 

invariance; (iii) reflectional invariance; and 

(iv) parity for i,j identical atoms. An example 

of potential satisfying the assumptions in 

Definition 1 is 
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The symmetries considered in Definition 1 are 

satisfied by other generalizations of the 

example potential (2), which include n-body 

terms depending only on the distances (1) 

between atoms. In fact, the symmetries (i)-(iv) 

imply that the potential U : R 3N → R can be 
written as a function of distances. We have the 

following theorem which we prove in Section 

III. 

Theorem 1. A central potential function U : R 

3N −→ R can be written as 

 
where the N(N − 1)/2 inputs are interpreted as 
the set of all pairwise distances (1) between 

atoms. Considering N = 2, Theorem 1 states 

that a central potential function U of 6 

variables can be written as a function φ of 1 
variable, r12. Consequently, Theorem 1 

reduces the dimensionality of the potential U 

for any N < 7. If N = 7, then we have 3N = 

N(N − 1)/2 = 21 and the 21-dimensional state 

space R 3N corresponds to the 21 distance 

variables (1). Since the dimension of the state 

space scales as O(N) and the number of 

distances scales as O(N2 ), Theorem 1 can be 

further improved by considering only a subset 

of the distance variables (1). In Section III, we 

also prove the following result. 

Theorem 2. Let N ≥ 4. Then a central potential 
function U : R 3N −→ R can be written as 

 
where the (4N − 10) inputs are a subset of the 
set of all pairwise distances (1). Considering N 

= 4 and N = 5, we have 4N −10 = 6 and 4N − 
10 = 10, respectively. In particular, Theorems 

1 and 2 state the same conclusion for N = 4 

and N = 5. Theorem 2 improves the result of 

Theorem 1 for N > 5. We will prove Theorems 

1 and 2 together in Section III by considering 

the cases N = 2, N = 3, N = 4, N = 5 and N > 

5. Applying Theorem 2 to our example 

potential (2), we observes that it reduces the 

number of independent variables for N > 5. In 

particular, while function φ constructed in the 
proof of Theorem 2 depends only on distances 

(1), it is not given in the form (2). In addition 

to central potential functions satisfying 

conditions in Definition 1, there are potentials 

to which Theorems 1 and 2 are not applicable. 

For example, if the potential U corresponds to 

an external non-uniform 

 
and U will neither satisfy the conditions in 

Definition 1, nor will it be possible to write as 

a function of pairwise distances (1). Assuming 

that there is no external field present and that 

we have a system of N identical atoms 

interacting (i.e. U satisfies condition (iv) in 

Definition 1), then we can formally write it as 

a sum of the n-body interactions for 2 ≤ n ≤ N 
in the form 

 
where we can naturally think about n-

polyhedrons of atoms as the input to the 

potential function, but these are fixed in space 

and a natural assumption is that given this 

input, it should not matter where we fix this 

polyhedron (leading to translational invariance 

(i)), or how we orient this polyhedron 

(rotational invariance (ii)). One slightly more 

subtle assumption, is that we should be 

allowed to reflect our polyhedron in any plane 

that keeps the polyhedron on one side 

(reflectional symmetry (iii)). One difference 

between symmetries (i)–(ii) and (iii)– (iv) is 

that the former ones are continuous 

symmetries whereas the reflection invariance 

(iii) and parity (iv) are not. Noether’s theorem 

[27] states that each continuous symmetry 

gives rise to a corresponding conserved 

quantity (in a closed system). In particular, 

translational invariance (i) leads to conserved 

linear momentum (which is a consequence of 

reciprocity of forces) and rotational invariance 

(ii) gives rise to conserved angular 

momentum. In the next section, we provide a 

proof that functions obeying symmetries (i)–
(iv) should only rely on distances and we also 

show that a proper subset of pairwise distances 
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for N > 5 can be used to describe the potential 

function U. 

II. PROOFS OF THEOREMS 1 AND 2 

We prove Theorems 1 and 2 together by 

considering the cases N = 2, N = 3, N = 4 and 

N = 5, followed by an inductive argument for 

N > 5. We define displacement vectors by 

 
A. The case N = 2 

We define function φ : [0,∞) → R by 

 
where kˆ is a unit vector in the direction of the 
positive z axis and 0 = [0, 0, 0]. Given atom 

positions q1, q2 ∈ R 3 , we translate the 

configuration to position atom 1 at the origin. 

Using symmetry (i) in Definition 1, we have 

U(q1, q2) = U(0, ∆12). We then rotate the axes 
using rotation R1 ∈SO(3) such that the 

displacement vector connecting the two atoms 

is aligned with the positive z axis, giving 

R1∆12 = r12kˆ, while maintaining R10 = 0. 
Using symmetry (ii) in Definition 1, we have 

 
where the last equality follows from our 

definition (5). This concludes the proof of 

Theorem 1 for N = 2. 

B. The case N = 3  

Given atom positions q1, q2, q3 ∈ R 3 , we 

consider the function U(q1, q2, q3). Using 

symmetry (i) in Definition 1, we translate the 

configuration to position atom 1 at the origin 

and consequently, we have 

 
Given that we have three axes to rotate around, 

we canalways find a rotation R1 such that 

R1∆12 = r12kˆ, as wedid in the N = 2 case. 
Using symmetry (ii), we have 

 
However the key point is that R2R1∆13 is 
uniquely defined by the triangle with lengths 

r12, r13 and r23, theangles of which can be 

calculated using the cosine rule,i.e. R2R1∆13 
can be expressed as 

 
Therefore there exists function φ : [0,∞)3 → R 
suchthat U(q1, q2, q3) = φ(r12, r13, r23), for 
any q1, q2 andq3, confirming Theorem 1 for N 

= 3. 

C. The case N = 4 

Given atom positions q1, q2, q3, q4 ∈ R3, 

these can bethought of defining the vertices of 

a tetrahedron (or ifco-planar a quadrilateral). 

Following similar steps as inthe case N = 3 in 

Section III B, we translate atom 1 

 
FIG. 1. A schematic of the constructive 

method in aid of theproof for the case N = 3.to 

the origin, apply rotation R1 to orient 

displacementvector ∆12 with the positive z 
axis, then do a secondrotation R2 that fixes the 

triangle formed by the verticesof atoms 1, 2 

and 3 in the x-z plane. As in Section III B,we 

have 

Using equation (6), we know that R2R1∆13 is 
determined entirely by distances r12, r13 and 

r23. All thatremains to be shown is that 

R2R1∆14 is determined bypairwise istances. 
We note that the triangle formed byatoms 1, 2 

and 3 (denoted as ABC in the lower partof our 

illustration of the proof in Figure 2) is 

uniquelydetermined (after orienting one side 

with the positive zaxis). Consequently, this 

fixes the side BC. On the otherhand the 

triangle BCD is uniquely determined (as 

oneside BC is fixed) by distances r23, r24 and 

r34. These canbe thought of as two triangles 

which can rotate around ahinge BC, so to 

determine the vector R2R1∆14, we necessarily 
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need the final distance r14 that gives the 

anglebetween the planes containing triangles 

ABC and BCD(two configurations are 

illustrated in Figure 2). If triangles ABC and 

BCD are co-planar, the set of all pairwise 

distances, with this orientation, will give a 

uniquedescription of R2R1∆14. If these 
triangles are not coplanar, this final distance 

gives two possible vectors forR2R1∆14. These 
correspond to a unique R2R1∆14 andthe copy 
obtained by reflection in the plane 

containingtriangle ABC. However by property 

(iii) we know thatif we reflect in the plane 

containing ABC with a matrixdenoted Q, then 

IV. CONCLUSIONS  

This study has explored how symmetry 

principles emerge and are conserved in multi-

particle systems governed by distance-

dependent interaction potentials. We have 

shown that such systems often exhibit 

rotational, translational, and sometimes scaling 

symmetry, depending on the specific form of 

the potential function. These symmetries lead 

to conserved quantities such as angular 

momentum and total linear momentum, which 

play vital roles in understanding both the 

qualitative and quantitative behavior of the 

system. 

Importantly, we demonstrated that the 

invariance of the potential under certain 

transformations directly determines the 

dynamical symmetries and integrability of the 

many-body model. When such symmetry 

conditions are slightly violated—through 

external fields, anisotropic modifications, or 

time dependence—the corresponding 

conservation laws are broken, leading to more 

complex, often chaotic behavior. 

In conclusion, distance-dependent interactions 

serve as a foundation for exploring symmetry-

driven dynamics in many-body physics. The 

findings provide a framework for future 

studies in quantum many-body systems, 

molecular dynamics, and gravitational models, 

where symmetry continues to offer a guiding 

principle in the search for analytical solutions 

and physical insights. 
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